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Outcomes
Oscar A. Garcia, Naisargi Dave, Qie Tang, Josvin John,  
Anthony Topper, Kashyap Bhuva, Manasi Shrotri, Sayali Shelke,  
Xiaosong Wen, Dr. Reza Mollaaghababa, Prof. Fatemeh Emdad,  
Prof. Chun-Kit Ngan, Prof. Elke Rundensteiner, and  
Prof. Seyed A Zekavat*

Natural language processing has evolved over time and is now used widely 
for text classification. This article focuses on building a natural language 
processing classification model to determine whether the U.S. Patent and 
Trademark Office (“USPTO”) will affirm or reverse an appealed patent 
application rejection. Appeals from USPTO rejections of patent applications 
are a critical component of patent prosecution practice. The model is trained 
on affirmed and reversed claims before 2018 that are available on the USPTO 
and Patent Application Information Retrieval websites.

A patent is an intellectual property right that is granted by 
the U.S. Constitution to inventors. A patent allows an inventor to 
exclude others from making, selling, or using an invention for a 
limited duration. The process of obtaining a patent involves filing 
a patent application with the U.S. Patent and Trademark Office 
(“USPTO”). The application undergoes examination at the USPTO 
and if it satisfies various statutory requirements for patentability, 
it matures into a patent. 

The claims of a patent define the scope of protection provided 
by the patent. Typically, the initially filed claims undergo changes 
during the examination process before the issuance of a patent. 
Such changes generally arise through negotiations between an 
applicant (and in most cases an applicant’s patent attorney) and a 
patent examiner assigned to examine the patent application. 

An applicant also has the opportunity to appeal an examiner’s 
final rejection to the Patent Trial and Appeal Board (“PTAB”). The 
PTAB can affirm, reverse, or remand an examiner’s decision with 
respect to a rejected claim or send the case back to the examiner 
for further consideration. We also note that under the America 
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Invents Act (“AIA”), which came into effect in 2012, a third party 
can challenge the validity of an issued patent before the PTAB. 

In this article, we report the results of the application of a 
“BERT” algorithm for predicting whether the PTAB will affirm or 
reverse an examiner’s decision. We employed a number of applica-
tion programming interfaces (“APIs”) that the USPTO has made 
available to access the information we needed for input into the 
machine learning algorithms. In particular, we used an API known 
as BulkAPI to access data corresponding to claim texts and the 
disposition of the respective patent applications. 

We used unique identifiers associated with a filed patent 
application for extracting the required information. The informa-
tion provided by the APIs was in the form of json and xml files. 
We aggregated the data by connecting data points using common 
identifiers, such as, patent application numbers. 

Related Work

This section of the article briefly reviews the recent natural 
language processing contributions for application to patent data. 

David Winer1 developed algorithms to predict two major 
outcomes: whether the PTAB will institute a trial based on a post-
grant challenge brought against one or more claims of a patent, 
and whether the challenged claims will be invalidated if a trial is 
instituted. This article focuses on the former algorithm, that is, 
whether the PTAB would institute a trial (we refer to the PTAB’s 
decision in this regard as acceptance/denial where acceptance refers 
to the PTAB’s decision to institute a trial and denial refers to the 
PTAB’s decision not to institute a trial). 

To predict acceptance/denial, we used natural language pro-
cessing (“NLP”) such as Word2Vec to convert each litigated pat-
ent document into thousands of numeric features. Following the 
combination of these text-based features with patent metadata, 
we used two primary machine learning algorithms to attempt to 
classify these documents as belonging to acceptance or denial cat-
egories: support vector classification and random forests. Our best 
performing model was the simple linear support vector classifier 
with 1/λ set to 10, giving an accuracy of 78 percent on test data, 
precision value 0.82, and recall value 0.87.
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PatentBERT2 focused on fine-tuning a pre-trained BERT model 
and applying it to patent classification; that is, organizing patents 
into specific categories according to their technical content. When 
applied to large data sets of over two million patents, this approach 
outperformed the state-of-the-art approach using the Convolu-
tional Neural Network (“CNN”) with word embeddings. In addi-
tion, this approach focuses on patent claims without considering 
other portion of the patent documents. DeepPatent, also a deep 
learning algorithm for patent classification based on CNN and 
word vector embedding, was proposed by Li Shaobo and others3 
and represents an improvement over PatentBERT.

Background

Bidirectional Encoder Representations from Transformers 
(“BERT”)4 is a language model published by Google. This is a bidi-
rectionally trained model, which has a deeper sense of context and 
flow than a single direction language model. BERT learns informa-
tion from left to right and right to left. Such bidirectional learning 
makes BERT more powerful in making accurate predictions than 
left-to-right models. It uses Masked LM (“MLM”) to mask words 
in a sentence and then it tries to predict them. This enables the 
model to use the full context of the sentence and take both previous 
and next tokens into account at the same time. Use of these pre-
trained word embeddings from BERT will help improve machine 
understanding of claims.

Data Set and Preprocessing

Data Collection

All of the relevant data is provided publicly through the USPTO. 
As noted above, the USPTO provides a variety of APIs at the domain 
developer.uspto.gov, including APIs for accessing the textual 
content of a patent application, along with its application status. 
The “Bulk” API provides access to archived records of all patent 
applications, packaged into zip files organized by week. The PTAB 
Proceedings and Documents REST API can provide the decision 
status for all appealed patents. Our approach required obtaining 
relevant data from these distinct sources and then matching records 

http://developer.uspto.gov
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appropriately. There are several kinds of identifiers used by the 
USPTO for labeling patents, but some of them are not unique and 
some are not provided by certain APIs. We found that the patent 
application number (named as “respondentApplicationNumber-
Text” in the API) was the most reliable to match entries. The data 
consisted of patent application documents and their corresponding 
PTAB decisions from 2002 to 2016.

Data Preprocessing

Transformer-based models, like BERT, are advanced enough 
to gain information from stop words and lemmas, which are com-
monly removed in traditional NLP models. In contrast, the prepro-
cessing in BERT involves only removing special characters that are 
introduced from parsing the application document from xml files.

Use Case

After a claim of a patent application has been rejected twice or 
has been finally rejected by an examiner, the applicant may seek to 
appeal the decision to the PTAB, which will reverse or affirm the 
examiner’s decision or remand the decision back to the examiner 
for further consideration. We present models that attempt to predict 
whether the PTAB will reverse or affirm the examiner’s decision.

Because the reversal of the examiner’s decision (the “Reversed 
class”) by the PTAB represents a positive outcome for the applicant, 
we have concentrated on optimizing the prediction accuracy for 
the Reverse class at the expense, in some cases, of sacrificing some 
correct predictions of the affirmed class. For this particular use 
case, we propose adding a bias to the BERT model to increase the 
correct classifications of the Reversed class.

Methodology

In addition to the text of the claims in a patent application, we 
also added additional information as features. During the exami-
nation process, the examiner may reject a claim based on multiple 
grounds. During appeal, the PTAB may agree with some of the 
grounds of rejection raised by the examiner while disagreeing with 
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others. However, it is sufficient for the PTAB to agree with only 
one rejection ground for the claim not to be allowed. 

Although the USPTO API can be used to extract the reasons 
an examiner rejected a claim of a patent application that is under 
appeal, the API cannot be employed to extract the PTAB’s deci-
sion with respect to each ground of rejection raised relative to a 
claim. For example, the PTAB may not agree with an examiner that 
a claim is anticipated by a cited reference but may agree with the 
examiner that the claim is obvious with respect to that reference 
alone or in combination with other references. Therefore, we did 
not attempt to build a model that can predict the opinion of the 
PTAB for each ground of rejection, but only whether the PTAB’s 
final decision led to affirmance of the totality of the examiner’s 
rejection of a claim or its reversal. 

We used the Hugging face library,5 which contains many per-
tinent NLP models and an easy to use interface for building our 
model. More specifically, we used the “bert-base-cased” model 
and then fine-tuned it to our specific task. The issues raised by the 
examiner and the applications assigned art unit were added as one-
hot encoded features concatenated to the final layer of the BERT 
embedding to form the input to the classification head. 

The classification head had two hidden layers with 512 and 256 
neurons, respectively, with ReLU activation functions; only these 
neurons were trained using the AdamW optimizer with a learn-
ing rate of 1e-5 and Binary Cross Entropy loss, while the BERT 
embeddings were frozen to avoid modifying their inherent language 
understanding. The output probabilities of the models were calcu-
lated using a sigmoid function; a constant bias was added here to 
shift the probabilities toward the Reversed class (the result of this 
bias is reported separately from the unbiased model).

This model was trained using an early stopping strategy with 
a patience of three and a delta of 0.001. A stratified sample of 70 
percent for training, 15 percent for testing that controls the early 
stopping, and 15 percent for validation was used. This experiment 
was performed five times with different random seeds to ensure 
the validity of the results; their average is presented.

Results

The average result among all unbiased BERT iterations can be 
seen in Figure 1. This confusion matrix corresponds with a 59.35 
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percent accuracy and a 0.5929 ROC6 with a balanced prediction 
power between the two classes.

The results for the biased models were not consistent when 
using a single bias value; this means that bias values have to be 
calibrated for each iteration to reach the desired prediction levels. 
A single biased model, which included a bias of 0.035 toward the 
Reversed class, is presented as an example in Figure 2. This biased 
model had a lower accuracy of 0.56 percent but a higher ROC of 
0.5939.

Figure 1. Unbiased BERT Confusion Matrix

Figure 2. Biased BERT Confusion Matrix
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To better understand the implications of our models for the use 
case presented above, we show our results in easy to understand 
visualization in Figures 3 and 4 using 100 cases as an example, 
where the numbers displayed are rounded to the nearest integer.

Figure 3. Results Visualizations of the Unbiased BERT Model 

Figure 4. Results Visualizations of the Biased BERT Model 
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Conclusion

The difficulty of achieving a high performance could be because 
patent applications are highly technical texts that can be unintel-
ligible to anyone who lacks the correct technical background even 
if they are highly educated and have good reading comprehension. 
Another reason classification may be difficult could be due to the 
numerous and very different ways a patent may be rejected or an 
examiner’s decision affirmed; if the PTAB API would provide the 
board decisions for each issue raised by the examiner as discussed 
above, the prediction of the outcome could be done piecemeal by 
more specialized models, leading to a better performance.

Our BERT model does consistently better than random chance 
and we believe that it can assist a human agent to identify promis-
ing patent applications that are likely to be reversed by the PTAB, 
especially when using our biased BERT model. 
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